Crabs Climb Trees?

Sunday, 16 March 2014

Charles Darwin

Charles Robert Darwin (1809–1882). The Voyage of the Beagle.
Vol. 29, pp. 466-475 of The Harvard Classics

Many amazing things happen in the Malay jungles. For example, Darwin tells about a crab that climbs trees and walks down the trunks for an occasional bath in a pool.


Chapter XX

  During another day I visited West Islet, on which the vegetation was perhaps more luxuriant than on any other. The cocoa-nut trees generally grow separate, but here the young ones flourished beneath their tall parents, and formed with their long and curved fronds the most shady arbours. Those alone who have tried it, know how delicious it is to be seated in such shade, and drink the cool pleasant fluid of the cocoa-nut. In this island there is a large bay-like space, composed of the finest white sand: it is quite level and is only covered by the tide at high water; from this large bay smaller creeks penetrate the surrounding woods. To see a field of glittering white sand, representing water, with the cocoa-nut trees extending their tall and waving trunks around the margin, formed a singular and very pretty view.


  I have before alluded to a crab which lives on the cocoa-nuts; it is very common on all parts of the dry land, and grows to a monstrous size: it is closely allied or identical with the Birgos latro. The front pair of legs terminate in very strong and heavy pincers, and the last pair are fitted with others weaker and much narrower. It would at first be thought quite impossible for a crab to open a strong cocoa-nut covered with the husk; but Mr. Liesk assures me that he has repeatedly seen this effected. The crab begins by tearing the husk, fibre by fibre, and always from that end under which the three eyeholes are situated; when this is completed, the crab commences hammering with its heavy claws on one of the eye-holes till an opening is made. Then turning round its body, by the aid of its posterior and narrow pair of pincers, it extracts the white albuminous substance. I think this is as curious a case of instinct as ever I heard of, and likewise of adaptation in structure between two objects apparently so remote from each other in the scheme of nature, as a crab and a cocoa-nut tree. The Birgos is diurnal in its habits; but every night it is said to pay a visit to the sea, no doubt for the purpose of moistening its branchiæ. The young are likewise hatched, and live for some time, on the coast. These crabs inhabit deep burrows, which they hollow out beneath the roots of trees; and where they accumulate surprising quantities of the picked fibres of the cocoa-nut husk, on which they rest as on a bed. The Malays sometimes take advantage of this, and collect the fibrous mass to use as junk. These crabs are very good to eat; moreover, under the tail of the larger ones there is a mass of fat, which, when melted, sometimes yields as much as a quart bottle full of limpid oil. It has been stated by some authors that the Birgos crawls up the cocoa-nut trees for the purpose of stealing the nuts: I very much doubt the possibility of this; but with the Pandanus 1 the task would be very much easier. I was told by Mr. Liesk that on these islands the Birgos lives only on the nuts which have fallen to the ground.

  Captain Moresby informs me that this crab inhabits the Chagos and Seychelle groups, but not the neighbouring Maldiva archipelago. It formerly abounded at Mauritius, but only a few small ones are now found there. In the Pacific, this species, or one with closely allied habits, is said 2 to inhabit a single coral island, north of the Society group. To show the wonderful strength of the front pair of pincers, I may mention, that Captain Moresby confined one in a strong tin-box, which had held biscuits, the lid being secured with wire; but the crab turned down the edges and escaped. In turning down the edges, it actually punched many small holes quite through the tin!

  I was a good deal surprised by finding two species of coral of the genus Millepora (M. complanata and alcicornis), possessed of the power of stinging. The stony branches or plates, when taken fresh from the water, have a harsh feel and are not slimy, although possessing a strong and disagreeable smell. The stinging property seems to vary in different specimens: when a piece was pressed or rubbed on the tender skin of the face or arm, a pricking sensation was usually caused, which came on after the interval of a second, and lasted only for a few minutes. One day, however, by merely touching my face with one of the branches, pain was instantaneously caused; it increased as usual after a few seconds, and remaining sharp for some minutes, was perceptible for half an hour afterwards. The sensation was as bad as that from a nettle, but more like that caused by the Physalia or Portuguese man-of-war. Little red spots were produced on the tender skin of the arm, which appeared as if they would have formed watery pustules, but did not. M. Quoy mentions this case of the Millepora; and I have heard of stinging corals in the West Indies. Many marine animals seem to have this power of stinging: besides the Portuguese man-of-war, many jelly-fish, and the Aplysia or seaslug of the Cape de Verd Islands, it is stated in the voyage of the Astrolabe, that an Actinia or sea-anemone, as well as a flexible coralline allied to Sertularia, both possess this means of offence or defence. In the East Indian sea, a stinging sea-weed is said to be found.

  Two species of fish, of the genus Scarus, which are common here, exclusively feed on coral: both are coloured of a splendid bluish-green, one living invariably in the lagoon, and the other amongst the outer breakers. Mr. Liesk assured us, that he had repeatedly seen whole shoals grazing with their strong bony jaws on the tops of the coral branches: I opened the intestines of several, and found them distended with yellowish calcareous sandy mud. The slimy disgusting Holuthuriæ (allied to our star-fish), which the Chinese gourmands are so fond of, also feed largely, as I am informed by Dr. Allan, on corals; and the bony apparatus within their bodies seems well adapted for this end. These Holuthuriæ, the fish, the numerous burrowing shells, and nereidous worms, which perforate every block of dead coral, must be very efficient agents in producing the fine white mud which lies at the bottom and on the shores of the lagoon. A portion, however, of this mud, which when wet resembled pounded chalk, was found by Professor Ehrenberg to be partly composed of siliceous-shielded infusoria.

  April 12th.—In the morning we stood out of the lagoon on our passage to the Isle of France. I am glad we have visited these islands: such formations surely rank high amongst the wonderful objects of this world. Captain Fitz Roy found no bottom with a line 7200 feet in length, at the distance of only 2200 yards from the shore; hence this island forms a lofty submarine mountain, with sides steeper even than those of the most abrupt volcanic cone. The saucer-shaped summit is nearly ten miles across; and every single atom, 3 from the least particle to the largest fragment of rock, in this great pile, which however is small compared with very many other lagoon-islands, bears the stamp of having been subjected to organic arrangement. We feel surprise when travellers tell us of the vast dimensions of the Pyramids and other great ruins, but how utterly insignificant are the greatest of these, when compared to these mountains of stone accumulated by the agency of various minute and tender animals! This is a wonder which does not at first strike the eye of the body, but, after reflection, the eye of reason.

  I will now give a very brief account of the three great classes of coral-reefs; namely, Atolls, Barrier, and Fringing-reefs, and will explain my views 4 on their formation. Almost every voyager who has crossed the Pacific has expressed his unbounded astonishment at the lagoon-islands, or as I shall for the future call them by their Indian name of atolls, and has attempted some explanation. Even as long ago as the year 1605, Pyrard de Laval well exclaimed, “C’est une merveille de voir chacun de ces atollons, environné d’un grand banc de pierre tout autour, n’y ayant point d’artifice humain.” The accompanying sketch of Whitsunday Island in the Pacific, copied from Capt. Beechey’s admirable Voyage, gives but a faint idea of the singular aspect of an atoll: it is one of the smallest size, and has its narrow islets united together in a ring. The immensity of the ocean, the fury of the breakers, contrasted with the lowness of the land and the smoothness of the bright green water within the lagoon, can hardly be imagined without having been seen.


  The earlier voyagers fancied that the coral-building animals instinctively built up their great circles to afford themselves protection in the inner parts; but so far is this from the truth, that those massive kinds, to whose growth on the exposed outer shores the very existence of the reef depends, cannot live within the lagoon, where other delicately-branching kinds flourish. Moreover, on this view, many species of distinct genera and families are supposed to combine for one end; and of such a combination, not a single instance can be found in the whole of nature. The theory that has been most generally received is, that atolls are based on submarine craters; but when we consider the form and size of some, the number, proximity, and relative positions of others, this idea loses its plausible character: thus Suadiva atoll is 44 geographical miles in diameter in one line, by 34 miles in another line; Rimsky is 54 by 20 miles across, and it has a strangely sinuous margin; Bow atoll is 30 miles long, and on an average only 6 in width; Menchicoff atoll consists of three atolls united or tied together. This theory, moreover, is totally inapplicable to the northern Maldiva atolls in the Indian Ocean (one of which is 88 miles in length, and between 10 and 20 in breadth), for they are not bounded like ordinary atolls by narrow reefs, but by a vast number of separate little atolls; other little atolls rising out of the great central lagoon-like spaces. A third and better theory was advanced by Chamisso, who thought that from the corals growing more vigorously where exposed to the open sea, as undoubtedly is the case, the outer edges would grow up from the general foundation before any other part, and that this would account for the ring or cup-shaped structure. But we shall immediately see, that in this, as well as in the crater-theory, a most important consideration has been overlooked, namely, on what have the reef-building corals, which cannot live at a great depth, based their massive structures?

  Numerous soundings were carefully taken by Captain Fitz Roy on the steep outside of Keeling atoll, and it was found that within ten fathoms, the prepared tallow at the bottom of the lead, invariably came up marked with the impression of living corals, but as perfectly clean as if it had been dropped on a carpet of turf; as the depth increased, the impressions became less numerous, but the adhering particles of sand more and more numerous, until at last it was evident that the bottom consisted of a smooth sandy layer: to carry on the analogy of the turf, the blades of grass grew thinner and thinner, till at last the soil was so sterile, that nothing sprang from it. From these observations, confirmed by many others, it may be safely inferred that the utmost depth at which corals can construct reefs is between 20 and 30 fathoms. Now there are enormous areas in the Pacific and Indian Ocean, in which every single island is of coral formation, and is raised only to that height to which the waves can throw up fragments, and the winds pile up sand. Thus Radack group of atolls is an irregular square, 520 miles long and 240 broad; the Low Archipelago is elliptic-formed, 840 miles in its longer, and 420 in its shorter axis: there are other small groups and single low islands between these two archipelagoes, making a linear space of ocean actually more than 4000 miles in length, in which not one single island rises above the specified height. Again, in the Indian Ocean there is a space of ocean 1500 miles in length, including three archipelagoes, in which every island is low and of coral formation. From the fact of the reef-building corals not living at great depths, it is absolutely certain that throughout these vast areas, wherever there is now an atoll, a foundation must have originally existed within a depth of from 20 to 30 fathoms from the surface. It is improbable in the highest degree that broad, lofty, isolated, steep-sided banks of sediment, arranged in groups and lines hundreds of leagues in length, could have been deposited in the central and profoundest parts of the Pacific and Indian Oceans, at an immense distance from any continent, and where the water is perfectly limpid. It is equally improbable that the elevatory forces should have uplifted throughout the above vast areas, innumerable great rocky banks within 20 to 30 fathoms, or 120 to 180 feet, of the surface of the sea, and not one single point above that level; for where on the whole surface of the globe can we find a single chain of mountains, even a few hundred miles in length, with their many summits rising within a few feet of a given level, and not one pinnacle above it? If then the foundations, whence the atoll-building corals sprang, were not formed of sediment, and if they were not lifted up to the required level, they must of necessity have subsided into it; and this at once solves the difficulty. For as mountain after mountain, and island after island, slowly sank beneath the water, fresh bases would be successively afforded for the growth of the corals. It is impossible here to enter into all the necessary details, but I venture to defy 5 any one to explain in any other manner how it is possible that numerous islands should be distributed throughout vast areas-all the islands being low-all being built of corals, absolutely requiring a foundation within a limited depth from the surface.

  Before explaining how atoll-formed reefs acquire their peculiar structure, we must turn to the second great class, namely, Barrier-reefs. These either extend in straight lines in front of the shores of a continent or of a large island, or they encircle smaller islands; in both cases, being separated from the land by a broad and rather deep channel of water, analogous to the lagoon within an atoll. It is remarkable how little attention has been paid to encircling barrier-reefs; yet they are truly wonderful structures. The following sketch represents part of the barrier encircling the island of Bolabola in the Pacific, as seen from one of the central peaks. In this instance the whole line of reef has been converted into land; but usually a snow-white line of great breakers, with only here and there a single low islet crowned with cocoa-nut trees, divides the dark heaving waters of the ocean from the light-green expanse of the lagoon-channel. And the quiet waters of this channel generally bathe a fringe of low alluvial soil, loaded with the most beautiful productions of the tropics, and lying at the foot of the wild, abrupt, central mountains.

  Encircling barrier-reefs are of all sizes, from three miles to no less than forty-four miles in diameter; and that which fronts one side, and encircles both ends, of New Caledonia, is 400 miles long. Each reef includes one, two, or several rocky islands of various heights; and in one instance, even as many as twelve separate islands. The reef runs at a greater or less distance from the included land; in the Society archipelago generally from one to three or four miles; but at Hogoleu the reef is 20 miles on the southern side, and 14 miles on the opposite or northern side, from the included islands. The depth within the lagoon-channel also varies much; from 10 to 30 fathoms may be taken as an average; but at Vanikoro there are spaces no less than 56 fathoms or 363 feet deep. Internally the reef either slopes gently into the lagoon-channel, or ends in a perpendicular wall sometimes between two and three hundred feet under water in height: externally the reef rises, like an atoll, with extreme abruptness out of the profound depths of the ocean. What can be more singular than these structures? We see an island, which may be compared to a castle situated on the summit of a lofty submarine mountain, protected by a great wall of coral-rock, always steep externally and sometimes internally, with a broad level summit, here and there breached by a narrow gateway, through which the largest ships can enter the wide and deep encircling moat.


  As far as the actual reef of coral is concerned, there is not the smallest difference, in general size, outline, grouping, and even in quite trifling details of structure, between a barrier and an atoll. The geographer Balbi has well remarked, that an encircled island is an atoll with high land rising out of its lagoon; remove the land from within, and a perfect atoll is left.

  But what has caused these reefs to spring up at such great distances from the shores of the included islands? It cannot be that the corals will not grow close to the land; for the shores within the lagoon-channel, when not surrounded by alluvial soil, are often fringed by living reefs; and we shall presently see that there is a whole class, which I have called Fringing Reefs from their close attachment to the shores both of continents and of islands. Again, on what have the reef-building corals, which cannot live at great depths, based their encircling structures? This is a great apparent difficulty, analogous to that in the case of atolls, which has generally been overlooked. It will be perceived more clearly by inspecting the above sections, which are real ones, taken in north and south lines, through the islands with their barrier-reefs, of Vanikoro, Gambier, and Maurua; and they are laid down, both vertically and horizontally, on the same scale of a quarter of an inch to a mile.



1. Vanikoro. 2. Gambier Islands. 3. Maurua. The horizontal shading shows the barrier-reefs and lagoon-channels. The inclined shading above the level of the sea (AA) shows the actual form of the land; the inclined shading below this line, shows its probable prolongation under water.

  It should be observed that the sections might have been taken in any direction through these islands, or through many other encircled islands, and the general features would have been the same. Now, bearing in mind that reef-building coral cannot live at a greater depth than from 20 to 30 fathoms, and that the scale is so small that the plummets on the right hand show a depth of 200 fathoms, on what are these barrier-reefs based? Are we to suppose that each island is surrounded by a collar-like submarine ledge of rock, or by a great bank of sediment, ending abruptly where the reef ends?

  If the sea had formerly eaten deeply into the islands, before they were protected by the reefs, thus having left a shallow ledge round them under water, the present shores would have been invariably bounded by great precipices; but this is most rarely the case. Moreover, on this notion, it is not possible to explain why the corals should have sprung up, like a wall, from the extreme outer margin of the ledge, often leaving a broad space of water within, too deep for the growth of corals. The accumulation of a wide bank of sediment all round these islands, and generally widest where the included islands are smallest, is highly improbable, considering their exposed positions in the central and deepest parts of the ocean. In the case of the barrier-reef of New Caledonia, which extends for 150 miles beyond the northern point of the islands, in the same straight line with which it fronts the west coast, it is hardly possible to believe that a bank of sediment could thus have been straightly deposited in front of a lofty island, and so far beyond its termination in the open sea. Finally, if we look to other oceanic islands of about the same height and of similar geological constitution, but not encircled by coral-reefs, we may in vain search for so trifling a circumambient depth as 30 fathoms, except quite near to their shores; for usually land that rises abruptly out of water, as do most of the encircled and non-encircled oceanic islands, plunges abruptly under it. On what then, I repeat, are these barrier-reefs based? Why, with their wide and deep moat-like channels, do they stand so far from the included land? We shall soon see how easily these difficulties disappear.


Note 1. See Proceedings of Zoological Society, 1832, p. 17.
Note 2. Tyerman and Bennett. Voyage, etc., vol. ii. p. 33.
Note 3. I exclude, of course, some soil which has been imported here in vessels from Malacca and Java, and likewise some small fragments of pumice, drifted here by the waves. The one block of greenstone, moreover, on the northern island must be excepted.
Note 4. These were first read before the Geological Society in May, 1837, and have since been developed in a separate volume on the “Structure and Distribution of Coral Reefs.”

Note 5. It is remarkable that Mr. Lyell, even in the first edition of his “Principles of Geology,” inferred that the amount of subsidence in the Pacific must have exceeded that of elevation, from the area of land being very small relatively to the agents there tending to form it, namely, the growth of coral and volcanic action. 
 

Get updates by Email

Tags

Addison Aeschylus Aesop American Historical Documents Anderson Announcements April Aristophanes August Augustine Aurelius Bacon Barrett Browning Beaumont and Fletcher Beowulf Berkeley Bhagavad Gita Bible Bigges Blake Browne Browning Buddhist Wrings Bunyan Burke Burns Byron Calderon de la Barca Calvin Carlyle Cellini Cervantes Chaucer Cicero Columbus Confucius Corneille Cowley Dana Dante Darwin De Quincey December Defoe Dekker Descartes Downloads Drummond Dryden Eliot Emerson Epictetus Euripides Fairy Tales Faraday February Fielding Fitzgerald For Dummies Franklin Froissart Goethe Goldsmith Grimm Haies Hamilton Harrison Harvey Hazlitt Helmholtz Herodotus Herrick Hippocrates Historical Documents Hobbes Holinshed's Chronicles Holmes Holy Bible Homer Hood Hugo Hume Hunt Huxley Introduction January Jenner Johnson Jonson July June Kant Keats Kelvin Kempis Kindle Koran Lamb Lessing Lincoln Lister Literature Locke Longfellow Lowell Luther Lyell Macaulay Machiavelli Malory Manzoni March Marlowe Marvell Massinger May Mazzini Mill Milton Molière Montaigne Moore. May More Morris Newcomb Newman News Nichols November October Pare Pascal Pasteur Penn Plato Pliny Plutarch Poe Pope Psalms Racine Raleigh Renan Roland Roper Rossetti Rousseau Ruskin Saint-Beuve Schiller September Shakespeare Shelley Sheridan Smith Sophocles Southey Spenser Steele Stevenson Swift Tacitus Taine Tennyson Thackeray The Harvard Classics Thoreau Vespucci Virgil Voltaire Volume 1 Walton Washington Webster Whitham Whitman Whittier Woolman Wordsworth